Robustness represents the ability of the surveillance system to produce acceptable outcomes over a range of assumptions about uncertainty by maximizing the reliability of an adequate outcome.
.


Surveillance design step
Advice for improvement of ROBUSTNESS
1
Surveillance system

1.1
Hazard

1.2
Surv. Objective

1.3
Geographical area covered

1.4
Susceptible species

1.5
Risk characteristics

2
Components overview

3
Target population

3.1
Target species

3.2
Target sector

3.3
Sectors missed

3.4
Geographical area covered

3.5
Target criteria

3.6
Percentage covered

4
Disease suspicion

4.1
Definition

4.2
Obligations

4.3
Notification procedures

4.4
Actions upon suspicions

4.5
Actions upon confirmation

5
Enhancements

6
Testing protocol
Consider choosing a test with low uncertainty in sensitivity and specificity to increase robustness.
6.1
Type of test to be carried out

6.2
Type of sample to be collected

6.3
Pooling

6.4
Screening/first test

6.5
Confirmatory/ second test

6.6
Further details

7
Study design
If you are uncertain about input values (e.g. for sample size, test characteristics) or assumptions made about the population, run a sensitivity analysis to determine the effectiveness of your components over the full range of values. If any parameter has a major effect on the outcome, consider collecting additional data to minimize uncertainty for this parameter.
7.1
Point of sample collection

7.2
Selection of units

7.3
Target unit

7.4
Sampling unit

7.5
Sampling design

7.6
Number of units in the target population

7.7
Sensitivity of the testing protocol

7.8
Specificity of the testing protocol

8
Sampling strategy

8.1
Sampling at the primary sampling unit (PSU) level:

8.2
Sampling at the secondary sampling unit (SSU) level:

8.3
Selection criteria WITHIN the population

8.4
Risk-based allocation

8.5
Sample size calculation

8.6
Sample allocation at the primary level

8.7
Sample allocation at the Secondary level

8.8
Sample collection timeline

9
Data Generation/ Sampling collection process

9.1
WHO will collect the samples?

9.2
HOW will samples be collected?

9.3
WHEN/HOW OFTEN will samples be collected?

9.4
Training

9.5
Follow-up

10
Transfer means

10.1
HOW will samples be transferred?
If complicated procedures for transportation are required, robustness may be reduced.
10.2
WHEN/HOW OFTEN will samples be collected?

10.3
Training

11
Data Translation/ sample analyses process

11.1
WHO will perform the analyses?

11.2
HOW will samples be analysed

11.3
WHEN/HOW OFTEN will samples be collected?

11.4
Expected LOAD

11.5
Training

11.6
Follow-up

12
Epidemiological analyses

12.1
Are there any epidemiological DATA that need to be collected?

12.2
WHO will perform the analyses?

12.3
HOW will epidemiological analyses be performed?

12.4
WHEN/HOW OFTEN?

12.5
Training

12.6
Data management needs

12.7
Software needs

13
Dissemination of results

13.1
WHO will disseminate the results?

13.2
WHO is the TARGET of dissemination?

13.3
HOW will results be disseminated?

13.4
WHEN/HOW OFTEN?

14
Surveillance review

14.1
Who

14.2
When

14.3
How often



home.png
survDESIGN.png
SurvREdesign.png
multihazard.png
risksur.jpg
ExcelTool.png
examples.png
guidedTours.png
glossary.png
references.png